4.6 Article

Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.2001.280.1.E75

关键词

arginine; ornithine; cell transfection; endothelial metabolism

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM057384] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [R01 GM-57384] Funding Source: Medline

向作者/读者索取更多资源

Endothelial cells (EC) metabolize L-arginine mainly by arginase, which exists as two distinct isoforms, arginase I and II. To understand the roles of arginase isoforms in EC arginine metabolism, bovine coronary venular EC were stably transfected with the Escherichia coli lacZ gene (lacZ-EC, control), rat arginase I cDNA (AI-EC), or mouse arginase II cDNA (AII-EC). Western blots and enzymatic assays confirmed high-level expression of arginase I in the cytosol of AI-EC and of arginase II in mitochondria of AII-EC. For determining arginine catabolism, EC were cultured for 24 h in DMEM containing 0.4 mM L-arginine plus [1-C-14] arginine. Urea formation, which accounted for nearly all arginine consumption by these cells, was enhanced by 616 and 157% in AI-EC and AII-EC, respectively, compared with lacZ-EC. Arginine uptake was 31-33% greater in AI-EC and AII-EC than in lacZ-EC. Intracellular arginine content was 25 and 11% lower in AI-EC and AII-EC, respectively, compared with lacZ-EC. Basal nitric oxide (NO) production was reduced by 60% in AI-EC and by 47% in AII-EC. Glutamate and proline production from arginine increased by 164 and 928% in AI-EC and by 79 and 295% in AII-EC, respectively, compared with lacZ-EC. Intracellular content of putrescine and spermidine was increased by 275 and 53% in AI-EC and by 158 and 43% in AII-EC, respectively, compared with lacZ-EC. Our results indicate that arginase expression can modulate NO synthesis in bovine venular EC and that basal levels of arginase I and II are limiting for endothelial syntheses of polyamines, proline, and glutamate and may have important implications for wound healing, angiogenesis, and cardiovascular function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据