4.7 Article

A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 61, 期 12, 页码 1773-1787

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0266-3538(01)00079-3

关键词

strength; failure criterion; computational simulation

向作者/读者索取更多资源

A new numerical model is proposed for simulating the mechanical behavior of unidirectional composites which is based on a three-dimensional (3D) shear-lag model. The 3D shear-lag model considers the micro-damage phenomena of interfacial debonding and interfacial yielding. In order to confirm the validity of the model, the calculated stress concentration is compared with the HVD model (Hedgepeth JM, Dyke P. Local stress concentrations in imperfect filamentary composite materials. J Comp Mater 1967;1:294-309) in the appropriate limit. Monte Carlo simulations with the present shear-lag model were then conducted to obtain the ultimate tensile strength (UTS) as a function of fiber strength and interfacial properties. The damage progression and formation of clusters versus the type of interfacial damage, and the size-scaling of the tensile strengths, are carefully examined. Coupled with a size-scaling analysis, model predictions for tensile strength show good agreement with experiment. (C) 2001 Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据