4.3 Article

Laminar burning velocity of methane-air-diluent mixtures

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1339984

关键词

-

向作者/读者索取更多资源

An experimental facility for measuring burning velocity has been designed and built. It consists of a spherical constant volume vessel equipped with a dynamic pressure transducer, ionization probes, thermocouple, and data acquisition system. The constant volume combustion vessel allows for the determination of the burning velocity over a wide range of temperatures and pressures from a single run. A new model has been developed to calculate the laminar burning velocity using the pressure data of the combustion process. The model solves conservation of mass and energy equations to determine the mass fraction of the burned gas as the combustion process proceeds. This new method allows for temperature gradients in the burned gas and the effects of flame stretch on burning velocity. Exact calculations of the burned gas properties are determined by using a chemical equilibrium code with gas properties from the JANAF Tables. Numerical differ entiation of the mass fraction burned determines the rate of the mass fraction burned from which the laminar burning velocity is calculated. Using this method, the laminar burning velocities of methane-air-diluent mixtures have been measured. A correlation has been developed for the range of pressures from 0.75 to 70 atm, unburned gas temperatures from 298 to 550 K, fuel/air equivalence ratios from 0.8 to 1.2, and diluent addition from 0 to 15 percent by volume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据