4.6 Article

Shaping Motor Cortex Plasticity Through Proprioception

期刊

CEREBRAL CORTEX
卷 24, 期 10, 页码 2807-2814

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bht139

关键词

interhemispheric inhibition; limb immobilization; motor cortex excitability; muscle vibration; proprioception; transcranial magnetic stimulation; use-dependent plasticity

向作者/读者索取更多资源

Short-term upper limb disuse induces a hemispheric unbalance between the primary motor cortices (M1s). However, it is still unclear whether these changes are mainly attributable to the absence of voluntary movements or to the reduction of proprioceptive information. The goal of this work was to investigate the role of proprioception in modulating hemispheric balance during a short-term right arm immobilization. We evaluated the 2 M1s excitability and the interhemispheric inhibition (IHI) between M1s in 3 groups of healthy subjects. Two groups received during the immobilization a proprioceptive (P-VIB, 80 Hz) and tactile (T-VIB, 30 Hz) vibration to the right hand, respectively. Another group did not receive any conditioning sensory inputs (No-VIB). We found that in the No-VIB and in the T-VIB groups immobilization induced a decrease of left M1 excitability and IHI from left to right hemisphere and an increase of right M1 excitability and IHI from right to left hemisphere. Differently, only a partial decrease in left M1 excitability, no change in right M1 excitability and in IHI was observed in the P-VIB group. Our findings demonstrate that the maintenance of dynamic proprioceptive inputs in an immobilized arm through muscle vibration can prevent the hemispheric unbalance induced by short-term limb disuse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据