4.6 Article

Enhanced Infragranular and Supragranular Synaptic Input onto Layer 5 Pyramidal Neurons in a Rat Model of Cortical Dysplasia

期刊

CEREBRAL CORTEX
卷 20, 期 12, 页码 2926-2938

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhq040

关键词

freeze-lesion; laser scanning photostimulation; polymicrogyria; synaptic excitation; synaptic inhibition

资金

  1. National Institute of Neurological Disorders and Stroke [NS12151]
  2. American Epilepsy Society

向作者/读者索取更多资源

Cortical dysplasias frequently underlie neurodevelopmental disorders and epilepsy. Rats with a neonatally induced cortical microgyrus [freeze-lesion (FL)], a model of human polymicrogyria, display epileptiform discharges in vitro. We probed excitatory and inhibitory connectivity onto neocortical pyramidal neurons in layers 2/3 and 5 of postnatal day 16-22 rats, approximately 1-2 mm lateral of the lesion, using laser scanning photostimulation (LSPS)/glutamate uncaging. Excitatory input from deep and supragranular layers to layer 5 pyramidal cells was greater in FL cortex, while no significant differences were seen in layer 2/3 cells. The increased input was due to a greater number of LSPS-evoked excitatory postsynaptic currents (EPSCs), without differences in amplitude or kinetics. Inhibitory input was increased in a region-specific manner in pyramidal cells in FL cortex, due to an increased inhibitory postsynaptic current (IPSC) amplitude. Connectivity within layer 5, parts of which are destroyed during lesioning, was more severely affected than connectivity in layer 2/3. Thus, we observed 2 distinct mechanisms of altered synaptic input: 1) increased EPSC frequency suggesting an increased number of excitatory synapses and 2) higher IPSC amplitude, suggesting an increased strength of inhibitory synapses. These increases in both excitatory and inhibitory connectivity may limit the extent of circuit hyperexcitability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据