4.6 Article

Slits Are Chemorepellents Endogenous to Hypothalamus and Steer Thalamocortical Axons into Ventral Telencephalon

期刊

CEREBRAL CORTEX
卷 19, 期 -, 页码 I144-I151

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhp035

关键词

axon guidance; axon inhibition; dorsal thalamus; hypothalamus; internal capsule; neocortex; robos

资金

  1. National Institutes of Health [R37 NS31558, R01 MH086147]

向作者/读者索取更多资源

Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into ventral telencephalon. During TCA pathfinding, Slit1 and Slit2 are expressed in hypothalamus and ventral thalamus and Robo1 and Robo2 are expressed in dorsal thalamus. In collagen gel cocultures of dorsal thalamus and Slit2-expressing cells, axon number and length are decreased on the explant side facing Slit2-expressing cells, overall axon outgrowth is diminished, and axons turn away from the Slit2-expressing cells. Thus, Slit2 is an inhibitor and chemorepellent for dorsal thalamic axons. Collagen gel cocultures of dorsal thalamus with sections of live diencephalon, with and without the hypothalamus portion overlaid with Robo2-fc-expressing cells to block Slit function, identify Slits as the hypothalamic chemorepellent. Thus, Slits are chemorepellents for TCAs endogenous to hypothalamus and steer TCAs from diencephalon into ventral telencephalon, a critical pathfinding event defective in Slit and Robo2 mutant mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据