4.6 Article

Cannabinoid sensitivity and synaptic properties of 2 GABAergic networks in the neocortex

期刊

CEREBRAL CORTEX
卷 18, 期 10, 页码 2296-2305

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhm253

关键词

CB(1); DSI; endocannabinoids; fast-spiking cells; gap junctions; microcircuits; neocortex

资金

  1. National Eye Institute
  2. National Institutes of Health [EY12114, EY09120]

向作者/读者索取更多资源

Distinct networks of gamma-aminobutyric acidergic interneurons connected by electrical synapses can promote different patterns of activity in the neocortex. Cannabinoids affect memory and cognition by powerfully modulating a subset of inhibitory synapses; however, very little is known about the synaptic properties of the cannabinoid receptor-expressing neurons (CB(1)-positive irregular spiking [CB(1)-IS]) in the neocortex. Using paired recordings in neocortical slices, we 1st report here that synapses of CB(1)-IS cells, but not synapses of fast-spiking (FS) cells, are suppressed by release of endocannabinoids from pyramidal neurons. CB(1)-IS synapses were characterized by a very high failure rate that contrasted with the high reliability of FS synapses. Furthermore, CB(1)-IS cells received excitatory inputs less frequently compared with FS cells and made significantly less frequent inhibitory contacts onto local pyramids. These distinct synaptic properties together with their characteristic irregular firing suggest that CB(1)-IS cells play different role in neocortical function than that of FS cells. Thus, whereas the synaptic properties of FS cells can allow them to impose high-frequency rhythmic oscillatory activity, those of CB(1)-IS cells may lead to disruption of fast rhythmic oscillations. Our results suggest that activity-dependent release of cannabinoids, by blocking CB(1)-IS synapses, may alter the role of inhibition in neocortical circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据