4.1 Article

Genotype x Environment Interaction and AMMI Analysis for Heat Tolerance in Wheat

期刊

CEREAL RESEARCH COMMUNICATIONS
卷 40, 期 2, 页码 267-276

出版社

AKADEMIAI KIADO ZRT
DOI: 10.1556/CRC.40.2012.2.11

关键词

G x E interaction; adaptability; heat stress; grain yield; wheat (Triticum aestivum L.)

类别

向作者/读者索取更多资源

Terminal heat, which is referred as increase in temperature during grain filling, is one of the important stress factors for wheat production. Current estimates indicate that wheat crop grown on around 13.5 m ha in India is affected by heat stress. In order to meet the challenges of high temperature ahead of global warming, concerted efforts are needed to evaluate germplasm for heat tolerance and identify and develop genotypes suitable for such stressed environments. The advanced wheat genotypes developed for stress and normal environments by different research centers were evaluated across 7 locations representing varied agroclimatic zones during 2007-08 and 2008-09 to study their adaptability for heat stress and non-stress environments. The additive main effects and multiplicative interaction analysis for G x E interactions revealed differences amongst locations to phenology and grain yield. Genotype RAJ 4083 developed for cultivation under late sown conditions in peninsular zone was also found adaptable to timely sown conditions. Similarly, HD 2733 a cultivar of NEPZ timely sown conditions and PBW 574 an advanced breeding line of NWPZ late sown conditions was found adapted to Peninsular zone. The cultivar RAJ 3765 showed specific adaptability to Pantnagar in NWPZ. Genotype NW 3069 developed for NEPZ timely sown conditions have shown adaptability to number of locations; timely sown conditions at Karnal and Hisar in NWPZ and Niphad in PZ. Likewise, WH 1022 developed for NEPZ late sown conditions exhibited specific adaptability to all timely sown locations in NWPZ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据