4.5 Article

Landscape ecotoxicology and assessment of risk at multiple scales

期刊

HUMAN AND ECOLOGICAL RISK ASSESSMENT
卷 8, 期 1, 页码 127-146

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/20028091056773

关键词

landscape ecology; metapopulations; patch dynamics; source-sink populations; spatial heterogeneity; scale; ecotoxicology

向作者/读者索取更多资源

Traditional approaches to ecotoxicology and ecological risk assessment frequently have ignored the complexities arising due to the spatial heterogeneity of natural systems. In recent years, however, ecologists have become increasingly aware of the influence of spatial organization on ecological processes. Landscape ecology provides a conceptual and theoretical framework for the analysis of spatial patterns, the characterization of spatial aspects of ecosystem function, and the understanding of landscape dynamics. Incorporating the insights of landscape ecology into ecotoxicology will enhance our ability to understand and ultimately predict the effects of toxic substances in ecological systems. Ecological risk assessments need to explicitly consider multiple spatial scales, accounting for heterogeneity within contaminated areas and for the larger landscape context. A simple simulation model is presented to illustrate the effects of spatial heterogeneity by linking an individual-based toxicokinetic model with a spatially distributed metapopulation model. Dispersal of organisms between contaminated and uncontaminated patches creates a situation where risk analysis must consider a spatial extent broader than the toxicant-contaminated area. In general, the addition of a toxicant to a source patch (i.e., a net exporter of individuals) will have a greater impact than the same toxicant addition to a sink patch (i.e., a net importer of individuals).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据