4.5 Article

Representational accuracy of stochastic neural populations

期刊

NEURAL COMPUTATION
卷 14, 期 1, 页码 155-189

出版社

M I T PRESS
DOI: 10.1162/089976602753284482

关键词

-

向作者/读者索取更多资源

Fisher information is used to analyze the accuracy with which a neural population encodes D stimulus features. It turns out that the form of response variability has a major impact on the encoding capacity and therefore plays an important role in the selection of an appropriate neural model. In particular, in the presence of baseline firing, the reconstruction error rapidly increases with D in the case of Poissonian noise but not for additive noise. The existence of limited-range correlations of the type found in cortical tissue yields a saturation of the Fisher information content as a function of the population size only for an additive noise model. We also show that random variability in the correlation coefficient within a neural population, as found empirically, considerably improves the average encoding quality. Finally, the representational accuracy of populations with inhomogeneous tuning properties, either with variability in the tuning widths or fragmented into specialized subpopulations, is superior to the case of identical and radially symmetric tuning curves usually considered in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据