4.7 Article

Polymer derived silicon oxycarbide ceramic monoliths: Microstructure development and associated materials properties

期刊

CERAMICS INTERNATIONAL
卷 44, 期 17, 页码 20961-20967

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.08.102

关键词

Polymer derived ceramics; Casting; Sintering; Electrical properties; Mechanical properties

资金

  1. ETH, through the Strategic Focus Area (SFA) - Advanced Manufacturing programme under the project Ceramic X.0 - High-precision micro-manufacturing of ceramics

向作者/读者索取更多资源

Polymer derived SiOC and SiCN ceramics (PDCs) are interesting candidates for additive manufacturing techniques to develop micro sized ceramics with the highest precision. PDCs are obtained by the pyrolysis of crosslinked polymer precursors at elevated temperatures. Within this work, we are investigating PDC SiOC ceramic monoliths synthesized from liquid polysiloxane precursor crosslinked with divinylbenzene for fabrication of conductive electromechanical devices. Microstructure of the final ceramics was found to be greatly influenced by the pyrolysis temperature. Crystallization in SiOC ceramics starts above 1200 degrees C due to the onset of carbothermal reduction leading to the formation of SiC and SiO2 rich phases. Microstructural characterisation using ex-situ X-ray diffraction, FTIR, Raman spectra and microscopy imaging confirms the formation of nano crystalline SiC ceramics at 1400 degrees C. The electrical and mechanical properties of the ceramics are found to be significantly influenced by the phase separation with samples becoming more electrically conducting but with reduced strength at 1400 degrees C. A maximum electrical conductivity of 10(1) S cm(-1) is observed for the 1400 degrees C samples due to enhancement in the ordering of the free carbon network. Mechanical testing using the ball on 3 balls (B3B) method revealed a characteristic flexural strength of 922 MPa for 1000 degrees C amorphous samples and at a higher pyrolysis temperature, materials become weaker with reduced strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据