3.9 Article

Zettawatt-exawatt lasers and their applications in ultrastrong-field physics

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevSTAB.5.031301

关键词

-

向作者/读者索取更多资源

Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, 5 to 6 orders of magnitude higher than was possible before. At these intensities, particles, electrons, and protons acquire kinetic energy in the megaelectron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 10(26-28) W/cm(2) in the coming decade, much beyond the current and near future intensity regime 10(23) W/cm(2), taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, teraelectron volt, and petaelectron volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications, in particular, and the possibility of merged reinforcement of high-energy physics and ultraintense laser.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据