4.5 Article

Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals

期刊

OPTICAL AND QUANTUM ELECTRONICS
卷 34, 期 1-3, 页码 205-215

出版社

SPRINGER
DOI: 10.1023/A:1013333700113

关键词

integrated optics; photonic crystal; radiation losses; waveguides

向作者/读者索取更多资源

We address the issue of out-of-plane losses in two-dimensional (2D) photonic crystals (PC) etched through a GaAs monomode waveguide clad with standard GaAlAs alloys. We correlate experimental transmission of PCs with two kinds of loss simulation results. The first kind is 2D and introduces an ad hoc imaginary index in the air holes to account for the losses [see (Benisty et al. Appl. Phys. Lett. 76, 532, 2000)]. The second kind is a novel exact three-dimensional calculation inspired by grating-Fourier analysis that provides quantitatively unprecedented agreement with experimental measurements taking into account hole depth as a limiting parameter. We conclude that, in revision to the conclusions of the above reference, the experimental losses are not the intrinsic ones, being larger by a factor of 5 to 10 due to insufficient hole depth. The transition occurs at a critical etch depth shown to be here around 700 nm. We thus predict, for holes deeper than 700 nm, much improved crystals with very low transmission losses and microresonators with ultra-high quality factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据