4.4 Article

Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: An analytical approach with respect to safety considerations

期刊

MAGNETIC RESONANCE IMAGING
卷 20, 期 1, 页码 65-76

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0730-725X(02)00483-6

关键词

MR safety; radiofrequency exposure; bio-heat equation; heat transfer; temperature rise

向作者/读者索取更多资源

In order to assess thermal response to RF exposure during MR procedures at the tissue level, simple analytical solutions to the non-stationary Pennes' bio-heat equation were obtained using the Green's function approach. Two thermal models appropriate for partial-body exposure were analyzed: In the first model, the temperature field at the periphery of an idealized volume RF resonator was modeled. The analytical solution reveals that tissue response to RF heating is characterized by an equilibration time and length. Both parameters are inversely related to tissue perfusion and vary for the soft-tissues considered between 0.27-25 min and 1.5-12 mm, respectively. None of the tissues investigated increase in temperature more than 0.5degreesC for each W/kg of power dissipated. Secondly, a homogeneous tissue solution was derived that predicts the temperature-time course to an MR examination with time-varying specific absorption rates (SAR). Since SAR limits indicated in current MR safety standards relate to running SAR averages computed over an appropriate period of time, an expression was formulated that gives an upper limit for the temperature rise averaged over the same period of time, as a function of both the upper limit of running SAR averages and the duration of the MR examination. The analysis revealed that the partial-body SAR limits indicated in the IEC standard may not guarantee under all circumstances compliance with the basic restrictions concerning temperature rise. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据