4.7 Article

Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites

期刊

CERAMICS INTERNATIONAL
卷 39, 期 6, 页码 6333-6342

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2013.01.059

关键词

Aluminum matrix composite; Wear; Debris; SEM

资金

  1. Armament Research Board (ARMREB), Defence Research and Development Organization (DRDO), India [ARMREB/MAA/2008/105]

向作者/读者索取更多资源

The nature and distribution of hard ceramic particles in composite materials influences the properties to greater extent. In the present work, the role of hard ceramic reinforced particles on the tribological behaviour of aluminum metal matrix composites consisting of single (SRP) and dual reinforced particles (DRP) is studied at different temperatures. Zircon sand and silicon carbide particles of size 20-32 mu m were used as reinforcement in commercial grade LM13 piston alloy. Composites of dual reinforced particles in aluminum matrix (DRP-AMCs) were developed by mixing 15 wt% reinforced particles by two step stir casting technique. The wear behaviour of DRP-AMCs and SRP-AMCs (single reinforced particles aluminum matrix composite) was investigated using a pin-on-disc method at high temperatures under dry sliding condition. The microstructural examination of developed composites shows globular and finely distributed eutectic silicon in the vicinity of the reinforced particles. Metallographic investigation revealed that the wear zone of the SRP composite consisted of a hardened layer, which is responsible for high wear loss observed in the SRP composite. The results further indicate a transition in the wear mode that occurs after 150 degrees C for all composites. Study reveals that the dual reinforcement of particles enhances the wear resistance as compared to single reinforced particles if mixed in a definite ratio. A combination of 3% zircon sand and 12% silicon carbide particle reinforced composite exhibits better wear resistance as compared to other combinations at all the temperatures for low and high loads both. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据