4.7 Article

Estimating mixtures of leaf functional types using continental-scale satellite and climatic data

期刊

GLOBAL ECOLOGY AND BIOGEOGRAPHY
卷 11, 期 1, 页码 23-39

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1466-822X.2002.00183.x

关键词

Australia; elevated CO; leaf functional types; leaf surface volume ratio; PAR; satellite observations; vegetation dynamics; vegetation structure

向作者/读者索取更多资源

Aim Recent research has shown that much of the variability in leaf gas exchange and leaf longevity can be related to variations in the surface : volume ratio of leaves. The aim of this paper was to develop a theoretical framework and a practical method to extend that result to the vegetation at the continental scale. Location The study was conducted in Australia. Methods We propose that vegetation is composed of a mixture of three basic leaf types, 'turgor' (T), 'mesic' (M) and, p 'sclerophyll' (S) leaves. Changes in the relative proportions of T, M and S leaves within a vegetation type are visualized using a ternary diagram and differences in vegetation structure are shown to be easily mapped onto the ternary diagram. We estimate the proportions of T, M and S leaves using readily available data. The total amount of PAR absorbed by the vegetation (fPAR) is estimated using continental-scale satellite observations. The total TAR is then decomposed into that absorbed by T, M and S leaves. The relative absorption of PAR by T leaves is estimated from the temporal dynamics in the satellite signal, while the relative proportions of M and S leaves are estimated using climatic (solar radiation, rainfall) data. Results When the availability of light, nutrients and water were near-optimal, the vegetation was composed of predominantly M leaves. In low nutrient environments S leaves predominated. T leaves were dominant in disturbed environments. Conclusions The theoretical framework is used to predict that elevated atmospheric CO2 would tend to increase the proportion of M and S leaves in an ecosystem and the resulting change means that the proportion of T leaves would decrease. In terms of the TMS scheme, this implies that elevated CO2 has the same net effect on the vegetation as a decrease in disturbance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据