4.7 Article

Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles

期刊

CERAMICS INTERNATIONAL
卷 38, 期 3, 页码 2295-2304

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2011.10.081

关键词

SnO2 nanoparticles; Structural properties; Alcohol sensing; Sensor response

资金

  1. Department of Science & Technology, Govt. of India [SR/S2/CMP-41/2008]

向作者/读者索取更多资源

The Zn-doped SnO2 nanoparticles synthesized by the chemical co-precipitation route and having dopant concentration varying from 0 to 4 at%, were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) for structural and morphological studies. XRD analyses reveal that all the samples are polycrystalline SnO2 having tetragonal rutile structure with nanocrystallites in the range 10-25 nm. The TEM images show agglomeration of grains (cluster of primary crystallites). A corresponding selected area electron diffraction pattern reveals the different Debye rings of SnO2, as analyzed in XRD. Alcohol sensing properties of all the Zn-doped samples were investigated for various concentrations of methanol, ethanol and propan-2-ol in air at different operating temperatures. Among all the samples examined, the 4 at% Zn-doped sample exhibits the best response to different alcohol vapors at the operating temperature of 250 degrees C. For a concentration of 50 ppm, the 4 at% Zn-doped sample shows the maximum response 85.6% to methanol, 87.5% to ethanol and 94.5% to propan-2-ol respectively at the operating temperature of 250 degrees C. A possible reaction mechanism of alcohol sensing has been proposed. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据