4.2 Article

Characterization of microfeatures in selective laser sintered drug delivery devices

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1243/095441102321032166

关键词

rapid prototyping; selective laser sintering; drug delivery devices; porous microstructure; polymers

向作者/读者索取更多资源

From initial applications in the fields of prosthesis, implants, surgery planning, anthropology, paleontology and forensics, the scope of rapid prototyping (RP) biomedical applications has expanded to include areas in tissue engineering (TE) and controlled drug delivery. In the current investigation, the feasibility of utilizing selective laser sintering (SLS) to fabricate polymeric drug delivery devices (DDDs) that are difficult to make using conventional production methods was studied. Two features, namely porous microstructure and dense wall formation, inherent in SLS fabricated parts were investigated for their potential roles in drug storage and controlling the release of drugs through the diffusion process. A study to determine the influence of key SLS process parameters on dense wall formation and porous microstructure of SLS fabricated parts was carried out. Composite-type DDDs incorporating dense wall and porous matrix features were designed and fabricated using SLS. The characteristics of the fabricated devices were investigated through microstructural examination and in vitro release tests carried out using a drug model or dye in a simulated body environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据