4.7 Article

The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams

期刊

CERAMICS INTERNATIONAL
卷 38, 期 4, 页码 3351-3359

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2011.12.045

关键词

Porosity; Thermal properties; SiC; Geopolymer

向作者/读者索取更多资源

Silicon carbide (SiC) foams were developed with a low temperature process by using an inorganic alkali aluminosilicates binder, also known as geopolymer. The foaming agent was the metallic silicon present as impurity in the SiC powder. Si in the alkaline solution led to gas evolution that induced the foaming of the slurries. The binder was a geopolymeric resin with atomic ratio Si/Al = 2 and potassium as alkaline cation, classified as (K)poly(silalate-siloxo). The geopolymeric resin was prepared using metakaolin as aluminosilicatic raw powder, while the alkali aqueous solution was KOH/K2SiO3. Metakaolin in alkaline conditions dissolved and re-precipitated to form geopolymeric nano-particulates that acted as a glue to stick together SiC particles (90 wt.%). Process parameters such as water addition, mixing time and curing temperature were correlated to the foam structure. The formation of prolate pores induced anisotropy in the compressive strength. The foams were studied by dilatometric analysis in inert and oxidative atmospheres up to 1200 degrees C. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据