4.1 Article Proceedings Paper

Purinergic regulation of sound transduction and auditory neurotransmission

期刊

AUDIOLOGY AND NEURO-OTOLOGY
卷 7, 期 1, 页码 55-61

出版社

KARGER
DOI: 10.1159/000046865

关键词

cochlea; hair cells; spiral ganglion neurons; adenosine 5 '-triphosphate; P2X receptor; P2Y receptor; endocochlear potential; afferent synapse

向作者/读者索取更多资源

In the cochlea, extracellular ATP influences the endocochlear potential, micromechanics, and neurotransmission via P2 receptors. Evidence for this arises from studies demonstrating widespread expression of ATP-gated ion channels (assembled from P2X receptor subunits) and G protein-coupled receptors (P2Y receptors). P2X(2) receptor subunits are localized to the luminal membranes of epithelial cells and hair cells lining scala media. These ion channels provide a shunt pathway for K+ ion egress. Thus, when noise exposure elevates ATP levels in this cochlear compartment, the K+ conductance through P2X receptors reduces the endocochlear potential. ATP-mediated K+ efflux from scala media is complemented by a P2Y receptor G protein-coupled pathway that provides coincident reduction of K+ transport into scala media from the stria vascularis when autocrine or paracrine ATP signalling is invoked. This purinergic signalling likely provides a basis for a reactive homoeostatic regulatory mechanism limiting cochlear sensitivity under stressor conditions. Elevation of ATP in the perilymphatic compartment under such conditions is also likely to invoke purinergic receptor-mediated changes in supporting cell micromechanics, mediated by Ca2+ influx and gating of Ca2+ stores. Independent of these humoral actions, ATP can be classified as a putative auditory neurotransmitter based on the localization of P2X receptors at the spiral ganglion neuron-hair cell synapse, and functional verification of ATP-gated currents in spiral ganglion neurons in situ. Expression of P2X receptors by type 11 spiral ganglion neurons supports a role for ATP as a transmitter encoding the dynamic state of the cochlear amplifier. Copyright (C) 2002 S. Karger AG, Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据