4.4 Article

Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence

期刊

LASERS IN MEDICAL SCIENCE
卷 17, 期 1, 页码 34-41

出版社

SPRINGER-VERLAG LONDON LTD
DOI: 10.1007/s10103-002-8264-7

关键词

collagen; fluorescence; gelatine; second harmonic generation; thermal denaturation

向作者/读者索取更多资源

Irreversible thermal conformational changes induced to collagen have been studied by optical methods. More specifically, second harmonic generation (SHG) from incident nanosecond Ng:YAG 1064 mn radiation and laser-induced fluorescence by 337 nm, pulsed nanosecond nitrogen laser excitation, at 405, 410 and 415 nm, emission wavelengths were registered at eight temperatures (40degrees, 50degrees, 55degrees, 60degrees, 65degrees, 70degrees, 75degrees and 80degreesC) and normalised with respect to the corresponding values at the ambient temperature of 30degreesC. The heating protocol used in this work, was selected to monitor only permanent changes reflecting in the optical properties of the samples under investigation. In this context, the SHG, directly related to the collagen fibril population in triple helix conformation, indicated on irreversible phase transition around 64degreesC. On the other hand fluorescence related to the destruction of cross-linked chromophores in collagen, some of which are related to the triple helix tertiary structure, also indicated a permanent phase transition around 63degreesC. These results are in agreement with previous results from studies with differential scanning calorimetry. However SHG and fluorescence, being non-invasive optical methods are expected to have a significant impact in the fields of laser ablative surgery and laser tissue welding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据