4.6 Article

Barbiturase, a novel zinc-containing amidohydrolase involved in oxidative pyrimidine metabolism

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 9, 页码 7051-7058

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110784200

关键词

-

向作者/读者索取更多资源

Barbiturase, which catalyzes the reversible amidohydrolysis of barbituric acid to ureidomalonic acid in the second step of oxidative pyrimidine degradation, was purified to homogeneity from Rhodococcus erythropolis JCM 3132. The characteristics and gene organization of barbiturase suggested that it is a novel zinc-containing amidohydrolase that should be grouped into a new family of the amidohydrolases superfamily. The amino acid sequence of barbiturase exhibited 48% identity with that of herbicide atrazine-decomposing cyanuric acid amidohydrolase but exhibited no significant homology to other proteins, indicating that cyanuric acid amidohydrolase may have evolved from barbiturase. A putative uracil phosphoribosyltransferase gene was found upstream of the barbiturase gene, suggesting mutual interaction between pyrimidine biosynthesis and oxidative degradation. Metal analysis with an inductively coupled radiofrequency plasma spectrophotometer revealed that barbiturase contains similar to4.4 mol of zinc per mol of enzyme. The homotetrameric enzyme had K-m and V-max values of 1.0 mM and 2.5 mumol/min/mg of protein, respectively, for barbituric acid. The enzyme specifically acted on barbituric acid, and dihydro-L-orotate, alloxan, and cyanuric acid competitively inhibited its activity. The full-length gene encoding the barbiturase (bar) was cloned and overexpressed in Escherichia coli. The kinetic parameters and physicochemical properties of the cloned enzyme were apparently similar to those of the wild-type.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据