4.6 Article

Spinesin/TMPRSS5, a novel transmembrane serine protease, cloned from human spinal cord

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 9, 页码 6806-6812

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M103645200

关键词

-

向作者/读者索取更多资源

A cDNA encoding a novel serine protease, which we designated spinesin, has been cloned from human spinal cord. The longest open reading frame was 457 amino acids. A homology search revealed that the human spinesin gene was located at chromosome 11q23 and contained 13 exons, the gene structure being similar to that of TMPRSS3 whose gene is also located on 11q23. Spinesin has a simple type 11 transmembrane structure, consisting of, from the N terminus, a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger receptor-like domain, and a serine protease domain. Unlike TMPRSS3, it carries no low density lipoprotein receptor domain in the stem region. The extracellular region carries five N-glycosylation sites. The sequence of the protease domain carried the essential triad His, Asp, and Ser and showed some similarity to that of TMPRSS2, hepsin, HAT, MT-SP1, TMPRSS3, and corin, sharing 45.5, 41.9, 41.3, 40.3, 39.1, and 38.5% identity, respectively. The putative mature protease domain preceded by H6DDDDK was produced in Escherichia coli, purified, and successfully activated by immobilized enterokinase. Its optimal pH was about 10. It cleaved synthetic substrates for trypsin, which is inhibited by p-amidinophenylmethanesulfonyl fluoride hydrochloride but not by antipain or leupeptin. Northern blot analysis against mRNA from human tissues including liver, lung, placenta, and heart demonstrated a specific expression of spinesin mRNA in the brain. Immunohistochemically, spinesin was predominantly expressed in neurons, in their axons, and at the synapses of motoneurons in the spinal cord. In addition, some oligodendrocytes were clearly stained. These results indicate that spinesin is transported to the synapses through the axons after its synthesis in the cytoplasm and may play important roles at the synapses. Further analyses are required to clarify its roles at the synapses and in oligodendrocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据