4.6 Article

Simulation of pressure-driven phase transitions from tetrahedral crystal structures

期刊

PHYSICAL REVIEW B
卷 65, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.094109

关键词

-

向作者/读者索取更多资源

Pressure-driven transitions of ionic materials from the zinc-blende to rocksalt and delta-ZnCl(2) to CdCl(2) crystal structures are studied using constant-stress molecular dynamics with a polarizable-ion potential model. Both transformations are characterized by a change in cation coordination environment from tetrahedral to octahedral and are nonmartensitic. Transformation mechanisms are identified and characterized and similarities discussed. The blende to rocksalt transformation is observed to proceed via a diatomic beta-tin-like structure, though this is shown to be a transition state and not a true intermediate phase in this system. The relationship of the observed mechanisms to those deduced from experiments on halide systems is discussed. The development of displacive motion across the simulation cell is discussed. The ZnCl(2) system is a layered structure, and while the coordination changes are highly cooperative within each layer, the overall transformation takes place on a layer-by-layer basis. In the blende, the interlayer correlations required to produce a grain-boundary-free final structure are associated with a shearing motion which propagates across the cell. These differences have characteristic effects on the kinetics of the transformations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据