4.7 Article

Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior

期刊

FASEB JOURNAL
卷 16, 期 1, 页码 72-76

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/cj.01-0104hyp

关键词

myogenic reactivity; mechanotransduction; cytoskeletal rearrangement

资金

  1. PHS HHS [R0I 59406] Funding Source: Medline

向作者/读者索取更多资源

We hypothesize that actin polymerization within vascular smooth muscle (VSM) in response to increased intravascular pressure is a novel and previously unrecognized mechanism underlying arterial myogenic behavior. This hypothesis is based on the following observations. 1) Unlike skeletal or cardiac muscle, VSM contains a substantial pool of unpolymerized globular (G) actin whose function is not known. 2) The cytosolic concentration of G-actin is significantly reduced by an elevation in intravascular pressure, demonstrating the dynamic nature of actin within VSM and implying a shift in the F: G equilibrium in favor of F-actin. 3) Agents that inhibit actin polymerization and stabilize the cytoskeleton (cytochalasins and latrunculin) inhibit the development of myogenic tone and decrease the effectiveness of myogenic reactivity. 4) Depolymerization of F-actin with cytochalasin D causes VSM relaxation and increased G-actin content, whereas polymerization of F-actin with jasplakinolide causes VSM contraction and decreased G-actin content. These results are consistent with observations in other cell types in which actin dynamics have been implicated in contractility and/or motility. Actin filament formation in VSM may therefore underlie mechanotransduction and, by providing additional sites for interaction with myosin, enhance force production in response to pressure. Although the mechanism by which actin polymerization is stimulated by pressure is not known, it likely occurs via integrin-mediated activation of signal transduction pathways previously associated with VSM contraction (e. g., PKC activation, Rho A, and tyrosine phosphorylation).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据