4.7 Article

High-grade gliomas and solitary metastases: Differentiation by using perfusion and proton spectroscopic MR Imaging

期刊

RADIOLOGY
卷 222, 期 3, 页码 715-721

出版社

RADIOLOGICAL SOC NORTH AMERICA
DOI: 10.1148/radiol.2223010558

关键词

brain neoplasms, diagnosis; brain neoplasms, MR; brain neoplasms, secondary; magnetic resonance (MR), spectroscopy; magnetic resonance (MR), perfusion study

向作者/读者索取更多资源

PURPOSE: To determine whether perfusion-weighted and proton spectroscopic MR imaging can be used to differentiate high-grade primary gliomas and solitary metastases on the basis of differences in vascularity and metabolite levels in the peritumoral region. MATERIALS AND METHODS: Fifty-one patients with a solitary brain tumor (33 gliomas, 18 metastases) underwent conventional, contrast material-enhanced perfusion-weighted, and proton spectroscopic MR imaging before surgical resection or stereotactic biopsy. Of the 33 patients with gliomas, 22 underwent perfusion-weighted MR imaging; nine, spectroscopic MR imaging; and two underwent both. Of the 18 patients with metastases, 12 underwent perfusion-weighted MR imaging, and six, spectroscopic MR imaging. The peritumoral region was defined as the area in the white matter immediately adjacent to the enhancing (hyperintense on T2-weighted images, but not enhancing on postcontrast T1-weighted images) portion of the tumor. Relative cerebral blood volumes in these regions were calculated from perfusion-weighted MR data. Spectra from the enhancing tumor, the peritumoral region, and normal brain were obtained from the two-dimensional spectroscopic MR acquisition. The Student t test was used to determine if there was a statistically significant difference in relative cerebral blood volume and metabolic ratios between high-grade gliomas and metastases. RESULTS: The measured relative cerebral blood volumes in the peritumoral region in high-grade gliomas and metastases were 1.31 +/- 0.97 (mean +/- SD) and 0.39 +/- 0.19, respectively. The difference was statistically significant (P < .001). Spectroscopic imaging demonstrated elevated choline levels (choline-to-creatine ratio was 2.28 &PLUSMN; 1.24) in the peritumoral region of gliomas but not in metastases (choline-to-creatine ratio was 0.76 &PLUSMN; 0.23). The difference was statistically significant (P = .001). CONCLUSION: Although conventional MR imaging characteristics of solitary metastases and primary high-grade gliomas may sometimes be similar, perfusion-weighted and spectroscopic MR imaging enable distinction between the two. (C) RSNA, 2002.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据