4.7 Article

Beautiful mirrors and precision electroweak data

期刊

PHYSICAL REVIEW D
卷 65, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.65.053002

关键词

-

向作者/读者索取更多资源

The standard model (SM) with a light Higgs boson provides a very good description of the precision electroweak observable data coming from the CERN LEP, SLD and Fermilab Tevatron experiments. Most of the observables, with the notable exception of the forward-backward asymmetry of the bottom quark, point towards a Higgs boson mass far below its current experimental bound. The disagreement, within the SM, between the values for the weak mixing angle as obtained from the measurement of the leptonic and hadronic asymmetries at lepton colliders, may be taken to indicate new physics contributions to the precision electroweak observables. In this article we investigate the possibility that the inclusion of additional bottomlike quarks could help resolve this discrepancy. Two inequivalent assignments for these new quarks are analyzed. The resultant fits to the electroweak data show a significant improvement when compared to that obtained in the SM. While in one of the examples analyzed the exotic quarks are predicted to be light, with masses below 300 GeV, and the Higgs boson tends to be heavy, in the second one the Higgs boson is predicted to be light, with a mass below 250 GeV, while the quarks tend to be heavy, with masses of about 800 GeV. The collider signatures associated with the new exotic quarks, as well as the question of unification of couplings within these models and a possible cosmological implication of the new physical degrees of freedom at the weak scale are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据