4.6 Article

Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins

期刊

JOURNAL OF APPLIED PHYSICS
卷 91, 期 5, 页码 3197-3204

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1447307

关键词

-

向作者/读者索取更多资源

Dielectric relaxation in disordered solids continue to be in the focus due to the important technological applications in the context of microwave and optical remote sensing and communication. The pragmatic philosophy of the present article is to use a combination of Jonscher's phenomenological equations with a generalized effective medium equation, due to McLachlan, to study the microwave relaxation dynamics in a technologically interesting system, i.e., a particle-filled polymeric resin. The introduction of a small number of parameters (critical exponents s and t, conductivity threshold phi(c)) into the standard Bruggeman effective medium equation dramatically improves its predictive power. This approach, termed the McLachlan-Jonscher model, has the potential to be quite flexible and is very sensitive to the values of the critical exponents s, t and of the conductivity threshold phi(c). Furthermore, a comparison of the calculated complex effective permittivity for a series of carbon black-filled polymers with experimental results shows that it can accurately describe the microwave response over a broad range of volume fraction of carbon black. These considerations illustrate the potential for using this coarse grained model to help understand the dielectric relaxation of particle dispersions in polymeric matrixes. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据