4.7 Article

General relation between quantum ergodicity and fidelity of quantum dynamics

期刊

PHYSICAL REVIEW E
卷 65, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.65.036208

关键词

-

向作者/读者索取更多资源

A general relation is derived, which expresses the fidelity of quantum dynamics, measuring the stability of time evolution to small static variation in the Hamiltonian, in terms of ergodicity of an observable generating the perturbation as defined by its time correlation function. Fidelity for ergodic dynamics is predicted to decay exponentially on time scale proportional to delta(-2), deltasimilar to strength of perturbation, whereas faster, typically Gaussian decay on shorter time scale proportional todelta(-1) is predicted for integrable, or generally nonergodic dynamics. This result needs the perturbation delta to be sufficiently small such that the fidelity decay time scale is larger than any (quantum) relaxation time, e. g., mixing time for mixing dynamics, or averaging time for nonergodic dynamics (or Ehrenfest time for wave packets in systems with chaotic classical limit). Our surprising predictions are demonstrated in a quantum Ising spin-(1/2) chain periodically kicked with a tilted magnetic field where we find finite parameter-space regions of nonergodic and nonintegrable motion in the thermodynamic limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据