4.7 Article

Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus

期刊

DIABETES
卷 51, 期 1, 页码 19-29

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.51.1.19

关键词

-

资金

  1. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [P01HD011089, P50HD011089] Funding Source: NIH RePORTER
  2. NICHD NIH HHS [HD11089] Funding Source: Medline

向作者/读者索取更多资源

Insulin resistance during pregnancy provokes gestational diabetes mellitus (GDM); however, the cellular mechanisms for this type of insulin resistance are not well understood. We evaluated the mechanisms(s) for insulin resistance in skeletal muscle from an animal model of spontaneous GDM, the heterozygous C57BL/KsJ-(db/+) mouse. Pregnancy triggered a novel functional redistribution of the insulin-signaling environment in skeletal muscle in vivo. This environment preferentially increases a pool of phosphatidylinositol (PI) 3-kinase activity associated with the insulin receptor, away from insulin receptor substrate (IRS)-1. In conjunction with the redistribution of PI 3-kinase to the insulin receptor, there is a selective increase in activation of downstream serine kinases Akt and p70S6. Furthermore, we show that redistribution of PI 3-kinase to the insulin receptor increases insulin-stimulated IRS-1 serine phosphorylation, impairs IRS-1 expression and its tyrosine phosphorylation, and decreases the ability of IRS-1 to bind and activate PI 3-kinase in response to insulin. Thus, the pool of IRS-1-associated PI 3-kinase activity is reduced, resulting in the inability of insulin to stimulate GLUT4 translocation to the plasma membrane. These defects are unique to pregnancy and suggest that redistribution of PI 3-kinase to the insulin receptor may be a primary defect underlying insulin resistance in skeletal muscle during gestational diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据