4.7 Article

Deliquescence of small particles

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 116, 期 1, 页码 311-321

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1420727

关键词

-

向作者/读者索取更多资源

The deliquescence of particles smaller than 100 nm in diameter from crystalline form to liquid droplets involves both solvation effects and surface energies. Here we study this phenomenon for the case of salt particles of initial dry diameters from 8 to 100 nm that are exposed to humid conditions from 45 to 95% relative humidity. With a simple thermodynamic equilibrium model for three soluble species (sodium chloride, ammonium sulfate, and a soluble organic compound), we show that the role of surface tension is to increase the relative humidity at which particles will deliquesce. For example, 15 nm dry diameter sodium chloride particles deliquesce at 83%, an 8% increase over the 75% deliquescence relative humidity for supermicron droplets and bulk solution. Many soluble species in air above 45% relative humidity are wetted with multiple layers of water molecules such that the relevant interface is that between the partially dissolved salt crystal and a saturated salt solution rather than between the dry crystal and air. Since surface tensions for this solid/liquid interface are not well known, a range of values have been used from the literature, yielding consistent results. While the existence of unstable equilibria during deliquescence of the system precludes complete experimental verification of the predicted behavior with measurements, a recent experiment suggests indirect agreement with the change in predicted deliquescence relative humidity. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据