4.7 Article

Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials

期刊

CEMENT AND CONCRETE RESEARCH
卷 40, 期 12, 页码 1756-1765

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2010.08.019

关键词

Adsorption; Diffusion; Durability; Modelling; PHREEQC

资金

  1. Japan Society for the Promotion of Science [2100930609]

向作者/读者索取更多资源

The main objective of this investigation is to describe the interaction between cement hydrates and electrolyte solution to understand multi-ionic transport in cementitious materials. A surface complexation model in PHREEQC including an electrostatic term is used to simulate the ionic adsorption on the calcium silicate hydrate (C-S-H) surface. The equilibrium constants for the adsorption of ions on C-S-H surfaces are obtained by fitting experimental data to the model. The adsorption of both divalent and mono-valent cations, and also anions significantly changes the surface charges of hydrated paste. Chloride is being held in a chemical binding as Friedel's salt and bound mainly by the adsorptive action of C-S-H. An integrated modelling approach employing a phase-equilibrium model, a surface complexation model, and a multicomponent diffusion model has been developed in PHREEQC to simulate the multi-ionic transport through hydrated cement paste. It was found that the physical adsorption of ions on C-S-H, the size of pores, and the surface site density of C-S-H govern the rate of penetration of ionic species. Finally, the proposed model has been validated against chloride profiles measured in this study as well as with data available in the literature for hydrated cement paste. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据