4.7 Article

Distribution and characterization of peroxisomes in arabidopsis by visualization with GFP: Dynamic morphology and actin-dependent movement

期刊

PLANT AND CELL PHYSIOLOGY
卷 43, 期 3, 页码 331-341

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf037

关键词

arabidopsis; confocal laser scanning microscope; GFP; movement of peroxisome; peroxisomal targeting signal (PTS); peroxisome

向作者/读者索取更多资源

Peroxisomes were visualized in living cells of various tissues in transgenic Arabidopsis by green fluorescent protein (GFP) through the addition of the peroxisomal targeting signal 1 (PTS1) or PTS2. The observation using confocal laser scanning microscopy revealed that the GFP fluorescence signals were detected as spherical spots in all cells of two kinds of transgenic plants. Immunoelectron microscopic analysis using antibodies against the peroxisomal marker protein, catalase, showed the presence of GFP in peroxisomes, confirming that GFP was correctly transported into peroxisomes by PTS1 or PTS2 pathways. It has been also revealed that peroxisomes are motile organelles whose movement might be caused by cytoplasmic flow. The movement of peroxisomes was more prominent in root cells than that in leaves, and divided into two categories: a relatively slow, random, vibrational movement and a rapid movement. Treatment with anti-actin and anti-tubulin drugs revealed that actin filaments involve in the rapid movement of peroxisomes. Moreover, abnormal large peroxisomes are present as clusters at the onset of germination, and these clusters disappear in a few days. Interestingly, tubular peroxisomes were also observed in the hypocotyl. These findings indicate that the shape, size, number and movement of peroxisomes in living cells are dynamic and changeable rather than uniform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据