4.6 Article

Hindgut fermentation in three species of marine herbivorous fish

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 68, 期 3, 页码 1374-1380

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.68.3.1374-1380.2002

关键词

-

向作者/读者索取更多资源

Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly, acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosas sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO2, and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据