4.7 Article

Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar

期刊

CEMENT & CONCRETE COMPOSITES
卷 49, 期 -, 页码 70-83

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2013.12.010

关键词

Modelling; Chemo-mechanical coupling; Numerical simulations; Sulfate attack

资金

  1. AREVA NC

向作者/读者索取更多资源

We develop and apply in this study a chemo-transport-mechanical model for simulating the external sulfate attacks in Portland (CEM I) cement pastes and mortars. Basically, this degradation consists in the simultaneous decalcification of the hydrated phases resulting from leaching processes, and the migration of sulfate ions within the material and its subsequent interactions with these phases. The sulfate uptake leads generally to ettringite precipitation mainly from monosulfate, which in turn may produce intense macroscopic expansions and cracking. In our approach, crystallization pressures arising from the restrained growth of monosulfate crystals due to the confinement of the surrounding C-S-H matrix are assumed to initiate the observed macroscopic expansions. A macroscopic strain tensor evaluated from the volume fraction of supplementary precipitated ettringite is further introduced in the mechanical behavior law for explicitly reproducing the macroscopic expansions. Analytical homogenization schemes are applied to estimate both mechanical and diffusive properties from the local volume fraction of solid phases. The numerical platform Alliances is then used for solving both reactive transport and mechanical coupled problems, and is applied to the simulation of laboratory tests consisting in prismatic mortar specimens immersed in solutions containing sodium sulfate and subjected to free expansions. Comparison of the numerical results with experimental ones in terms of phase assemblage profiles, evolutions of mass changes and expansions shows a correct agreement. Finally, the extension of the model towards cases of restrained displacement conditions is discussed and some modifications regarding the kinetics of ettringite precipitation are proposed for such situations. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据