4.5 Article

ARF function does not require p53 stabilization or Mdm2 relocalization

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 22, 期 1, 页码 196-206

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.22.1.196-206.2002

关键词

-

向作者/读者索取更多资源

It is generally accepted that the ARF tumor suppressor induces p53-dependent growth arrest by sequestering the p53 antagonist Mdm2 in the nucleolus. Previous mutagenic studies of murine ARF suggested that residues 1 through 14 and 26 through 37 were critical for Mdm2 binding, while the latter domain also governed ARF nucleolar localization. We show that mouse ARF residues 6 to 10 and 21 to 25 are required for ARF-induced growth arrest whereas residues 1 to 5 and 29 to 34 are dispensable. Deletion of the putative nucleolar localization signal (RRPR34)-R-31 did not prevent nucleolar localization. Surprisingly, unlike wild-type ARF, growth-inhibitory mutants D1-5 and D29-34 failed to stabilize p53 yet induced its transcriptional activation in reporter assays. This suggests that p53 stabilization is not essential for ARF-mediated activation of p53. Like wild-type ARF, both mutants also exhibited p53-independent function since they were able to arrest p53/Mdm2-null cells. Notably, other mutants lacking conserved residues 6 to 10 or 21 to 25 were unable to suppress growth in p53-positive cells despite nucleolar localization and the ability to import Mdm2. Those observations stood in apparent contrast to the ability of wild-type ARF to block growth in some cells without relocalizing endogenous Mdm2 to nucleoli. Together, these data show a lack of correlation between ARF activity and Mdm2 relocalization, suggesting that additional events other than Mdm2 import are required for ARF function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据