4.6 Article

Eigenvalue spectrum of the master equation for hierarchical dynamics of complex systems

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 4, 期 20, 页码 5052-5058

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b203534k

关键词

-

向作者/读者索取更多资源

We explored the eigenvalue spectra of the kinetic matrix which defines the master equation for the complex kinetics of the analogous polypeptides ( linear Ala6, cyclic Ala6, and charged Ala6). For each system we obtained the entire eigenvalue spectrum as well as the histograms of the weighted eigenvalue spectra, where each relaxation mode is weighted by the overlap between the initial probability vector and the corresponding eigenvector. It was found that the spectra of the weighted eigenvalues were significantly filtered in comparison to those of the unweighted eigenvalues, indicating that the decay is described by a small number of eigenvalues. The important eigenvalues which are extracted from the weighted eigenvalues spectra are in good agreement with the characteristic lifetimes for the kinetics of each system, as found by the fitting of the energy relaxation temporal profiles to multiexponential functions. Moreover, a partial correlation is found between the relative heights of the contributions of the important eigenvalues and the preexponential factors obtained by the fitting. In addition, we applied the spectra of the weighted eigenvalues to study the effect of the initial population distribution on the dynamics and also to infer which minima provide the dominant contributions to a specific relaxation mode. From the latter results one can infer whether the multiexponential relaxations represent sequential or parallel processes. This analysis establishes the interrelationship between the topography and topology of the energy landscapes and the hierarchy of the relaxation channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据