4.7 Article

Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs

期刊

出版社

ENDOCRINE SOC
DOI: 10.1210/jc.87.1.176

关键词

-

向作者/读者索取更多资源

Dehyroepiandrosterone (DHEA), an adrenal-derived steroid, has been clinically implicated in protection against coronary artery disease and experimentally in inhibition of atherosclerosis and plaque progression. Because DHEA is enzymatically metabolized to androgens or estrogens, it is not clear whether DHEA exerts effects directly or after conversion to these hormones, both of which are associated with well-characterized pathways of action. We therefore examined the effects of DHEA on proliferation of human vascular smooth muscle cells (VSMCs) in culture in the presence or absence of the ER antagonist ICI 182,780 and the AR antagonist flutamide and compared them with the effects of 17beta-estradiol, androstenedione, and T. We also determined the affinity of DHEA for ERs and ARs in VSMC and its specific binding in intact cells. To explore a possible mechanism for DHEA action in these cells, we measured the phosphorylation of ERK-1, c-jun N-terminal protein kinase, and p38 (three members of the MAPK superfamily). Both DHEA and 17beta-estradiol significantly inhibited platelet derived growth factor (PDGF)-BB-induced increases in VSMC proliferation, whereas androstenedione and T increased proliferation. Although E2-induced inhibition of the PDGF effect was abolished by ICI 182,780 and T-induced stimulation was abolished by flutamide, neither receptor antagonist altered the inhibitory effect of DHEA. Binding studies confirmed the presence of both ERs and ARs; DHEA showed minimal affinity for either receptor but bound specifically and with high affinity to putative receptors in intact cells. Following 4-h incubation with DHEA (1-100 nM), ERK1 phosphorylation was significantly reduced in a dose-dependent manner, whereas neither c-jun N-terminal protein kinase nor p38 kinase activity was altered by either PDGF-BB or DHEA. DHEA inhibits human VSMC proliferation by a mechanism independent of either ARs or ERs, presumably via a DHEA-specific receptor that involves ERK1 signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据