4.6 Article

Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice

期刊

GLIA
卷 37, 期 3, 页码 241-249

出版社

WILEY-LISS
DOI: 10.1002/glia.10033

关键词

remyelination; lysolecithin; immunoglobulin; multiple sclerosis

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS024180] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS24180] Funding Source: Medline

向作者/读者索取更多资源

Immunoglobulin-based therapies are becoming increasingly common for the treatment of neurologic and autoimmune diseases in humans. In this study, we demonstrate that systemic administration of either polyclonal human immunoglobulins or specific human monoclonal antibodies can accelerate the rate of CNS remyelination following toxin-induced demyelination. Injection of lysolecithin directly into the spinal cord results in focal demyelinated lesions. In contrast to other murine models of demyelinating disease, the mechanism of demyelination following lysolecithin injection is independent of immune system activation, and chronic inflammation at the site of the lesion is minimal. Administration of polyclonal human IgM (pHIgM) or a serum-derived human monoclonal antibody (sHIgM22) resulted in approximately a twofold increase in remyelinating axons when compared to animals treated with saline or with antibodies that do not promote repair. Both pHIgM and sHIgM22 show strong binding to CNS white matter and oligodendrocytes, while antibodies that did not accelerate remyelination do not. This differential staining pattern suggests that enhanced remyelination may result from direct stimulation of oligodendrocyte remyelination by binding to surface receptors on oligodendrocytes or glial progenitor cells. We propose the use of human polyclonal IgM or specific human monoclonal IgM antibodies as potential therapies to enhance myelin repair following CNS injury and disease. (C) 2002 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据