4.6 Article

Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 160, 期 3, 页码 1057-1068

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)64926-7

关键词

-

资金

  1. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [Z01DK056001, ZIADK056001] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Transforming growth factor-beta (TGF-beta) plays a central role in the pathogenesis of inflammatory and fibrotic diseases, including radiation-induced fibrosis. We previously reported that mice null for Smad3, a key downstream mediator of TGF-beta, show accelerated healing of cutaneous incisional wounds with reduced inflammation and accumulation of matrix. To determine if loss of Smad3 decreases radiation-induced injury, skin of Smad3+/+ [wild-type (WT)] and -/- [knockout (KO)] mice was exposed to a single dose of 30 to 50 Gy of gamma-irradiation. Six weeks later, skin from KO mice showed significantly less epidermal acanthosis and dermal influx of mast cells, macrophages, and neutrophils than skin from WT littermates. Skin from irradiated KO mice exhibited less immunoreactive TGF-beta and fewer myofibroblasts, suggesting that these mice will have a significantly reduced fibrotic response. Although irradiation induced no change in the immunohistochemical expression of the TGF-beta type I receptor, the epidermal expression of the type II receptor was lost after irradiation whereas its dermal expression remained high. Primary keratinocytes and dermal fibroblasts prepared from WT and KO mice showed similar survival when irradiated, as did mice exposed to whole-body irradiation. These results suggest that inhibition of Smad3 might decrease tissue damage and reduce fibrosis after exposure to ionizing irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据