4.5 Article

Human organic anion transporters and human organic cation transporters mediate renal antiviral transport

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.300.3.918

关键词

-

向作者/读者索取更多资源

Renal excretion is an important elimination pathway for antiviral agents, such as acyclovir (ACV), ganciclovir (GCV), and zidovudine (AZT). The purpose of this study was to elucidate the molecular mechanisms of renal ACV, GCV, and AZT transport using cells stably expressing human organic anion transporter 1 (hOAT1), hOAT2, hOAT3, and hOAT4, and human organic cation transporter 1 (hOCT1) and hOCT2. Time- and concentration-dependent uptake of ACV and GCV was observed in hOAT1- and hOCT1-expressing cells. In contrast, uptake of valacyclovir, L-valyl ester of ACV, was observed only in hOAT3-expressing cells. On the other hand, AZT uptake was observed in hOAT1-, hOAT2-, hOAT3-, and hOAT4-expressing cells. The K-m values of ACV uptake by hOAT1 and hOCT1 were 342.3 and 151.2 muM, respectively, whereas those of GCV uptake by hOAT1 and hOCT1 were 895.5 and 516.2 muM, respectively. On the other hand, the K-m values of AZT uptake by hOAT1, hOAT2, hOAT3, and hOAT4 were 45.9, 26.8, 145.1, and 151.8 muM, respectively. In addition, probenecid weakly inhibited the hOAT1-mediated ACV uptake. In conclusion, these results suggest that hOAT1 and hOCT1 mediate renal ACV and GCV transport, whereas hOAT1, hOAT2, hOAT3, and hOAT4 mediate renal AZT transport. In addition, L-valyl ester appears to be important in differential substrate recognition between hOAT1 and hOAT3. hOAT1 may not be the molecule responsible for the drug interaction between ACV and probenecid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据