4.7 Article

Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles

期刊

CELLULOSE
卷 21, 期 4, 页码 3055-3071

出版社

SPRINGER
DOI: 10.1007/s10570-014-0317-0

关键词

Cellulose nanowhiskers; Polyacrylamide; Graft polymerization; Silver nanoparticles; Copper nanoparticles

向作者/读者索取更多资源

Herein we present extensive studies that were undertaken to develop a new copolymer with distinctive characteristics for utilization in different applications particularly in conductive textiles. The copolymer is based on graft polymerization of cellulose nanowhiskers (CNWs) with acrylamide and therefore nominated CNW-polyacrylamide (PAAm) copolymer. Development of this copolymer comprises preparation of CNWs from purified cotton sliver as per the acid hydrolysis method, followed by copolymerization of the freshly prepared CNWs with AAm at different feeding ratios for the sake of product optimization in the presence of K2S2O8 as initiator. Thus, obtained CNW-PAAm copolymers were characterized by making use of the proper instruments and analysis facilities. Following this, the newly prepared and promising copolymer was selected and used as a precursor in the green synthesis of silver and copper nanoparticles. The crystal nature of CNWs as cellulose I remains unaltered after copolymerization, but the crystallinity decreases. According to thermal gravimetric analysis, the copolymer is much more thermally stable than CNWs. The CNW-PAAm copolymer can be used successfully as a highly functional, effective and adequate precursor for green synthesis of silver and copper nanoparticles as shown by UV-Vis spectral analysis and transmission electron microscopy micrographs. A multi-branched shape and hyperbranched shape-like tree involving silver nanoparticles and the PAAm graft of the copolymer are formed. Furthermore, Cu nanoparticles are chosen as a candidate for conductive fabrics application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据