4.7 Article

Cytotoxicity tests of cellulose nanofibril-based structures

期刊

CELLULOSE
卷 20, 期 4, 页码 1765-1775

出版社

SPRINGER
DOI: 10.1007/s10570-013-9948-9

关键词

Microfibrillated cellulose; MFC; Nanofibrils; Cytotoxicity

资金

  1. Research Council of Norway [196119/V30]

向作者/读者索取更多资源

Cellulose nanofibrils based on wood pulp fibres are most promising for biomedical applications. Bacterial cellulose has been suggested for some medical applications and is presently used as wound dressing. However, cost-efficient processes for mass production of bacterial cellulose are lacking. Hence, fibrillation of cellulose wood fibres is most interesting, as the cellulose nanofibrils can efficiently be produced in large quantities. However, the utilization of cellulose nanofibrils from wood requires a thorough verification of its biocompatibility, especially with fibroblast cells which are important in regenerative tissue and particularly in wound healing. The cellulose nanofibril structures used in this study were based on Eucalyptus and Pinus radiata pulp fibres. The nanofibrillated materials were manufactured using a homogenizer without pre-treatment and with 2,2,6,6-tetramethylpiperidine-1-oxy radical as pre-treatment, thus yielding nanofibrils low and high level of anionic charge, respectively. From these materials, two types of nanofibril-based structures were formed; (1) thin and dense structures and (2) open and porous structures. Cytotoxicity tests were applied on the samples, which demonstrated that the nanofibrils do not exert acute toxic phenomena on the tested fibroblast cells (3T3 cells). The cell membrane, cell mitochondrial activity and the DNA proliferation remained unchanged during the tests, which involved direct and indirect contact between the nano-structured materials and the 3T3 cells. Some samples were modified using the crosslinking agent polyethyleneimine (PEI) or the surfactant cetyl trimethylammonium bromide (CTAB). The sample modified with CTAB showed a clear toxic behaviour, having negative effects on cell survival, viability and proliferation. CTAB is an antimicrobial component, and thus this result was as expected. The sample crosslinked with PEI also had a significant reduction in cell viability indicating a reduction in DNA proliferation. We conclude that the neat cellulose nanostructured materials tested in this study are not toxic against fibroblasts cells. This is most important as nano-structured materials based on nanofibrils from wood pulp fibres are promising as substrate for regenerative medicine and wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据