4.7 Article

Surface modification of cotton nanocrystals with a silane agent

期刊

CELLULOSE
卷 20, 期 1, 页码 217-226

出版社

SPRINGER
DOI: 10.1007/s10570-012-9820-3

关键词

Cellulose nanocrystal; Cotton; Acid hydrolysis; Surface modification; Silane

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  3. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (Brazil) through Inomat, National Institute (INCT) for Complex Functional Materials

向作者/读者索取更多资源

The research herewith aims at obtaining cellulose nanocrystals with a reduced hydrophilic surface character using a silane with isocyanate groups (isocyanatepropyltriethoxysilane), which are very reactive to hydroxyl groups and thus, are readily able to react with the low quantity of free hydroxyl groups present in the cellulose nanocrystal surfaces, therefore, promoting surface modification. Cellulose nanocrystals were obtained by hydrochloric acid hydrolysis of cotton fiber and were characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and solid state Si-29 nuclear magnetic resonance (NMR) and their morphologies were investigated by scanning and transmission electron microscopy techniques. The nanocrystals presented a needle-like geometry with a 10 nm approximate diameter and a 166 nm average length. FTIR, Si-29 NMR and silicon mapping images showed that nanocrystal surface chemical modification was successfully achieved. Also, the results confirm that the chemical modification occurred mainly at the nanocrystal surface, keeping the morphological integrity of the nanocrystals. The applied methodology for surface modification of the cellulose nanocrystals provided nanofillers with more appropriate surface characteristics that allow the dispersion in polymeric matrices and the adhesion at filler-matrix interface to be obtained. This may result in a better performance of these nanocrystals as reinforcing agents of hydrophobic polymer matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据