4.5 Article

Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury

期刊

NEUROSCIENCE
卷 115, 期 1, 页码 275-283

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(02)00345-7

关键词

microcirculation; endothelial cells; neurons; glia; mRNA; protein synthesis

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS039860] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS39860] Funding Source: Medline

向作者/读者索取更多资源

Endothelin 1 (ET-1) exerts normally a powerful vasoconstrictor role in the control of the brain microcirculation. In altered states, such as following traumatic brain injury (TBI), it may contribute to the development of ischemia and/or secondary cell injury. Because little is known of ET-l's cellular compartmentalization and its association to vulnerable neurons after TBI, we assessed its expression (both mRNA and protein) in cerebral cortex and hippocampus using correlative in situ hybridization and immunocytochemical techniques. Sprague-Dawley male rats were killed at 4, 24 or 48 h after TBI (450 g from 2 m, Marmarou's model). Semiquantitative analysis of our in situ hybridization results indicated a 2.5- and a 2.0-fold increase in ET-1 mRNA content in the hippocampus and cortex respectively which persisted up to 48 h post TBI. At 4 and 24 h after TBI enzyme-linked immunosorbent assay showed a tendency for increased ET-1 synthesis. In animals subjected to TBI, qualitative immunocytochemical analysis revealed a shift in ET-1 expression from astrocytes (in control animals) to endothelial cells, macrophages and neurons. Astrocytes and macrophages were identified unequivocally by using double immunofluorescence revealing ET-1 and glial fibrillary acidic protein or ED-1, respectively, the markers being specific for these cellular types. While this redistribution was most prominent at 4 and 24 h post TBI, at 48 h the endothelial cells remained strongly ET-1 immunopositive. The results suggest that cellular types which in the intact animal synthesize little or no ET-1 provide novel sources of the peptide after TBI. These sources may contribute to the sustained cerebrovascular hypoperfusion observed post TBI. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据