4.7 Article

Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property

期刊

CELLULOSE
卷 16, 期 6, 页码 1033-1045

出版社

SPRINGER
DOI: 10.1007/s10570-009-9346-5

关键词

Bacterial cellulose; Acetobacter xylinum; Cellulose crystallinity, cellulose yield

资金

  1. Pennsylvania State University
  2. Pennsylvania Experiment Station

向作者/读者索取更多资源

Bacterial cellulose (BC) demonstrates unique properties including high mechanical strength, high crystallinity, and high water retention ability, which make it an useful material in many industries, such as food, paper manufacturing, and pharmaceutical application. In this study, different additives including agar, carboxymethylcellulose (CMC), microcrystalline cellulose, and sodium alginate were added into fermentation medium in agitated culture to enhance BC production by Acetobacter xylinum. The optimal additive was chosen based on the amount of BC produced. The produced BC was analyzed by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among the evaluated additives, CMC yielded highest BC production (8.2 g/L) compared to the control (1.3 g/L). The results also indicated that CMC-altered BC production increased with CMC addition and reached saturation around 1%. The variation between replicates for all analysis was < 5%. From XRD analysis, however, the crystallinity and crystal size decreased as CMC addition increased. FESEM results showed CMC-altered BC produced from agitated culture retained its interweaving property. TGA results demonstrated that CMC-altered BC had about 98% water retention ability, which is higher than BC pellicle produced with static culture. CMC-altered BC also exhibited higher T (max) compared to control. Finally, DMA results showed that BC from agitated culture loses its mechanical strength in both stress at break and Young's modulus when compared to BC pellicle. This study clearly demonstrated that addition of CMC enhanced BC production and slightly changed its structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据