4.5 Article

Intrinsic thermal resistance of the canine brain

期刊

NEUROSCIENCE
卷 113, 期 1, 页码 55-64

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(02)00159-8

关键词

hyperthermia; heat shock protein; dog brain

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS031693] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [R01 NS 31693] Funding Source: Medline

向作者/读者索取更多资源

Hyperthermia above a critical threshold results in multisystemic changes that include neurological manifestations of heat stroke. It is unknown if the latter represents an intrinsic thermal sensitivity of the CNS or whether injury is secondary to physiological responses of non-CNS origin. To address this issue, the present work examined functional, structural, and biochemical changes in the CNS of dogs subjected to a thermal dosage immediately below that which induces disseminated intravascular coagulation with secondary multiple organ injury. The experimental approach is previously reported, inducing a 42.5degreesC, 90 min, whole body hyperthermia while preventing other physiological responses to treatment, including respiratory alkalosis and significant reductions in mean arterial pressure. Functional analyses included neurologic examinations and brainstem auditory evoked potential recordings in the post-treatment interval in both hyperthermic and euthermic control populations. Biochemical and structural analyses examined the expression of 70-kDa heat shock proteins, cytokines, markers of astroglial and microglial injury/activation, evidence of vascular endothelial damage, and evidence of neuronal and axonal injury in brain between 0.5 h and 8 days from the end of the treatment. The only significant change associated with treatment was induction of the major inducible 70-kDa heat shock protein, this being most prominent in the cerebellum with maximal expression at 6 h and a return to baseline by 8 days. Collectively, from these results we suggest that the canine brain is intrinsically resistant to sublethal hyperthermia such that when CNS lesions occur, they do so in the presence of other physiological derangements. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据