4.7 Article

Analysis of the monoclinic-tetragonal-phase transition of zirconia under irradiation

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 300, 期 1, 页码 27-38

出版社

ELSEVIER
DOI: 10.1016/S0022-3115(01)00701-2

关键词

-

向作者/读者索取更多资源

Zirconia produced by the oxidation of zirconium alloys in nuclear reactors exhibits a phase transition under ionic irradiation, simulating a neutron irradiation. To understand the mechanism responsible for this irradiation driven phase transition, different kinds of projectiles were used to irradiate pure monoclinic zirconia samples. The evolution of these irradiated samples as a function of dpa has been studied using grazing X-ray diffraction. The Rietveld method has been applied on collected X-ray diffraction diagrams to study the phase produced under irradiation and the kinetics of its formation. Even at high dpa values, only the monoclinic and tetragonal phases were used to simulate X-ray diffraction diagrams. No amorphisation of zirconia was observed. The evolution of unit cells and short range strains in both phases under irradiation leads us to think that the irradiation driven transition is martensitic. Supposing that the inelastic stopping power in sub-cascades is responsible for the irradiation driven phase transition, we propose a model based on the Landau-Ginzburg effective hamiltonian to explain both the m --> t transition observed under irradiation and the t --> m transition measured during isochronal annealing after irradiation. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据