4.6 Article

Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP

期刊

CELLULAR SIGNALLING
卷 22, 期 3, 页码 447-456

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2009.10.016

关键词

Arrestin; Translocation; G-protein; Phosphoinositides; Protein kinase C; Rod photoreceptors

资金

  1. National Eye Institute [EY014864, EY007132, EY08571, EY06225]
  2. Karl Kirchgessner Foundation
  3. Research to Prevent Blindness
  4. Deutsche Forschungsgemeinschaft [GRK1044]
  5. FAUNStiftung, Mirriberg, Germany

向作者/读者索取更多资源

Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation. Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation. In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light. Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据