4.6 Article

EGFR activation confers protections against UV-induced apoptosis in cultured mouse skin dendritic cells

期刊

CELLULAR SIGNALLING
卷 20, 期 10, 页码 1830-1838

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2008.06.010

关键词

EGFR; signal transduction; skin dendritic cells; UV

资金

  1. NIH [P20 R11016457]
  2. Rhode Island Foundation
  3. Slater Center for Environmental Biotechnology

向作者/读者索取更多资源

Ultraviolet radiation (UV) induces apoptosis and functional maturation in skin dendritic cells (DCs). However, the molecular mechanisms through which UV activates DCs have not been thoroughly investigated. In this study, we examined the mechanisms of activation and apoptosis of DCs after UV irradiation by focusing on epidermal growth factor receptor (EGFR). Our previous studies have demonstrated that in addition to cognate ligands, EGFR is also activated by UVB irradiation in cultured human skin keratinocytes in vitro and in human skin in vivo. We found for the first time in this study that UV also induces EGFR activation in cultured mouse skin DCs (XS 106 cell line) as well as mouse monocyte-derived dendritic cells (MoDCs). Pharmacological inhibition of EGFR tyrosine kinase significantly inhibits UV-induced ERK, p38, and JNK MAP kinases, and their effectors, transcription factors c-Fos and c-Jun. Inhibition of EGFR also suppresses UV-induced activation of PI3K/AKT/mTOR/S6K and NF-kappa B signal transduction pathways. Our data demonstrated that UV induces LKB1/AMPK pathway, also dependent on EGFR trans-activation. We further observed that MAPK, LKB1/AMPK, PI3K/AKT/mTOR/S6K as well as NF-kappa B activation are impaired in EGFR-/- cells compared to wide type MEF cells after UV radiation. Taken together, we conclude that UV induces multiple signaling pathways mediated by EGFR trans-activation leading to possible maturation, apoptosis and Survival, and EGFR activation protects against UV-induced apoptosis in cultured mouse dendritic cells. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据